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ABSTRACT

Accurate cortical thickness estimation is important for the

study of many neurodegenerative diseases. Amongst the ap-

proaches previously proposed in the literature, mesh based

techniques typically lack computational efficiency, whereas

voxel based techniques tend to be faster but are less accurate.

The aim of this work is to propose a novel voxel based method

using the Laplacian definition of thickness, being both accu-

rate and computationally efficient. A subvoxel estimate of

the location of the boundary is obtained through ray-casting

using both partial volume estimation and the direction of the

streamlines. This estimate is then used to initialise the bound-

ary conditions when computing the length of the streamlines.

The approach was validated on synthetic phantoms and real

data, showing an improved accuracy and reproducibility.

Keywords: gray matter segmentation, cortical thickness,

partial volume estimation.

1. INTRODUCTION

Measurement of cortical thickness from 3D magnetic reso-

nance (MR) images can aid diagnosis and longitudinal stud-

ies of a wide variety of neurodegenerative diseases. Manual

measurements are labour intensive and have a high variabil-

ity, which implies a need for accurate and automated software

that maps the three dimensional cortical thickness of the en-

tire brain volume. Amongst the numerous approaches pre-

viously proposed in the literature, the two emerging trends

are the mesh based and voxel based techniques. Mesh based

approaches have the advantage to operate in the continuous

spatial domain and therefore can achieve subvoxel resolu-

tion. Most implementation also include a smoothness con-

straint which provides robustness to noise and false edges.

This however come to a cost as these approaches have typ-

ical running time of over 20 hour on standard PC [1]. Fol-

lowing the surface extraction, the thickness estimation can

be performed using several sets of metric [2]. In contrast,

voxel based techniques operate directly on the 3D voxel grid

of the image, and therefore are more computationally effi-

cient but are hampered by their limited accuracy. They are

also less robust to noise and missegmentation as they typically

lack the mechanisms required to assess and correct topologi-

cal errors. Several approaches have been proposed for thick-

ness estimation and the definition based on Laplace equa-

tion, first introduced by Jones [3], has gained wide accep-

tance. The Laplace’s equation associates two points on the

opposite cortical boundaries and defines thickness between

them. Whereas Jones’ approach [3] explicitly traces stream-

lines (Lagrangian approach), Yezzi [4] proposed a more effi-

cient method which involves solving a pair of first order linear

partial differential equations without any explicit construction

of correspondences (Eulerian approach). The major drawback

of the Eulerian approach is the accuracy of the thickness esti-

mation, especially within thin structures. An hybrid Eulerian-

Lagrangian approach was recently proposed by Rocha [5] to

improve accuracy while preserving efficiency but still lacks

the accuracy required for clinical applications, as both ap-

proaches do not allow for subvoxel initialisation at tissues

boundaries. In this paper, we propose to improve the hybrid

Eulerian-Lagrangian approach. The partial volume (PV) con-

tent of each boundary voxel, combined with the direction of

the tangent field, is used to accurately measure the position

of the boundary through ray-casting. This measurement pro-

vides a subvoxel initialisation for the Eulerian approach. Us-

ing PV model, gray matter mask can be restricted to pure vox-

els only, which improves the segmentation of deep sulci while

preserving the accuracy of the thickness estimation. For the

remainder of the paper, we first describe the segmentation al-

gorithms used, followed by the partial volume estimation, and

the cortical thickness estimation. We then validate the accu-

racy of our approach on synthetic data, and its reproducibility

on real data.

2. METHODS

2.1. Brain Segmentation.

Based on the previously proposed expectation maximisation

segmentation (EMS) algorithm [6], we have implemented a

method for segmentation of brain tissues into gray matter (GM),

white matter (WM) and cerebrospinal fluid (CSF), which in-
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cludes a polynomial based bias field correction and Markov

random fields to reduce the effects of noise [7]. In this paper,

the priors are first affinely registered to the data using a robust

block matching approach [8], followed by a smooth B-spline

based non-rigid registration [9] using normalised mutual in-

formation [10]. The registration is performed on a 20mm

spacing grid, producing a smooth deformation field. The reg-

istered priors are then used to initialise the EMS and enforce

spatial consistency throughout the segmentation process.

2.2. Partial Volume Estimation

Partial volume along tissue interfaces is estimated by model-

ing mixture of pure tissues and performing a maximum a pos-

teriori classification. We adopted a two stage procedure [11]

relying on both intensity and spatial information [12]. This

scheme has been optimised to compute a single map con-

taining the fractional content of pure gray matter using the

hard segmentations and bias corrected images obtained after

the EMS algorithm. Since voxels containing PV are mostly

present along boundaries, PV evaluation is first restricted to

the region formed by a dilated gray matter mask (radius 4),

followed by a segmentation performed using a Potts model [12]

and optimised with the Iterative Condition Modes algorithm [13].

Fractional content Fj/k between tissue j and k is then com-

puted following Santago and Gage technique [14] using the

bias corrected intensity x̄i, and the means of the two pure tis-

sue types μj and μk, such that:

Fj/k = U

„
μj − x̄i

μj − μk

«
(1)

where U(·) is a limiter restricting the range of the fractional
content to [0, 1]. The partial volume coefficient (PVC) of GM,
is defined as:

GMPVC = FGM/WM ∪ FGM/CSF (2)

2.3. Thickness using fractional content values

The thickness is measured using the approach of Jones [3]

where Laplace’s equation is solved in the GM volume (with

the WM and CSF voxels adjacent to the boundaries of the GM

set to fixed potentials) such that:

∇2f(x, y, z) =
∂2f

∂x2
+

∂2f

∂y2
+

∂2f

∂z2
= 0 (3)

The solution f(x, y, z) is a scalar field which divides the cor-

tex into a set of equipotential sublayers (Fig. 1.a). The nor-

malised gradient of the Laplace solution provides streamlines

between the WM and CSF, which do not intersect, are lo-

cally perpendicular to the equipotential sublayers, and pro-

vide a unique correspondence between the two boundaries.

The tangent vectors of the correspondence trajectories
−→
T cor-

responds to the normalised gradient vector field of f(x), reg-

ularised using a Gaussian function Gσ with σ = 1 such that

−→
T = Gσ ∗ ∇f

‖∇f‖ . (4)
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Fig. 1. a. Distance equations L0 and L1 for computation of

thickness W at a given point x. b. PV voxels (GM/CSF) in

deep sulci. Some of the voxels are composed of a mixture

GM/CSF/GM (GM in opposite directions). For those voxels,

initialisation of distance functions following the tangent field

is ambiguous.

An explicit integration of
−→
T (−−→T , resp.) between x and

the CSF (WM resp.) following the streamlines as proposed

by Jones [3], can be performed to compute the length of the

streamlines L1(x) (L0(x)resp.). This approach, called La-

grangian, is computationally expensive since each trajectory

is explicitly traced. In a further work, Yezzi [4] proposed an

Eulerian approach, in which a pair of first order partial dif-

ferential equations are solved to compute the length (L1(x)
and L0(x)) of the trajectories without explicitly tracking the

streamlines:
∇L0 · −→T = 1 and −∇L1 · −→T = 1, (5)

with boundary conditions L0(x) = 0, L1(x) = 0, ∀x ∈
[WM, CSF], leading to numerical finite difference approxi-

mations for L0[x, y, z] and L0[x, y, z] [4]). Rocha [5] showed

that the main advantage of the Eulerian approach is the com-

putational speed. However, its major drawback is the accu-

racy whose effects are emphasised when the anatomical struc-

tures, such as the GM, are small compared to the spatial res-

olution.

On these thin structures, the most important factor affect-

ing the accuracy of the Eulerian approach is the choice of ini-

tial boundary conditions for L0 and L1. In [4] they are fixed

to 0, implicitly assuming that the boundaries coincide with

the centre of the grid points and yielding to an overestimation

of the thickness when L0 and L1 are summed. Initialisation

of the boundaries to half of the negative mean voxel spacing

(i.e. -0.5 for 1mm spacing isotropic images) as proposed by

Diep [7], produces the correct thickness but only for isotropic

images when the boundaries coincide with the voxels borders

(no PV effect) and are aligned with the grid. For small and

highly convoluted structures, such as the GM where PV ef-

fects become preponderant, this initialisation hamper greatly

the accuracy. Rocha [5] improved the boundary conditions by

defining boundaries from a presegmented surface computed

with subvoxel accuracy. To our knowledge, none of the previ-

ously proposed methods addresses the initialisation problem

within a pure discrete voxel-based scheme.
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2.3.1. Correction of segmentation.

The accuracy of the measure will depend on the quality of the

GM segmentation and we first produce a reliable 3D bounded

GM grid for thickness computation. This grid is contiguous

along the interfaces allowing solving the PDE from one tissue

boundary (GM/WM) to the other (GM/CSF). To this end, the

GMPVC map is combined with the obtained hard segmenta-

tions as follows:

• Every GM voxel belonging to the GM/CSF (GM/WM

resp.) boundary is reclassified as CSF (WM resp.) if

the GMPVC is below 1.

• To guarantee continuity of the GM grid, all the CSF

(WM resp.) voxels lying on a CSF/WM boundary are

reclassified as GM, regardless of their fractional con-

tent.

Restricting the GM mask to only pure tissue voxels provides

a good delineation of deep sulci. Furthermore, correcting for

the WM/CSF gaps allows us to measure thin GM zones, even

when its thickness is less than one voxel.

2.3.2. Boundaries initialisation.

To define the boundary condition, for each GM voxel shar-

ing a boundary with one or more mixed voxel we follow the

streamline from the GM boundary in the direction of
−→
T (−−→T

resp.), looking for the real boundary GM/CSF (GM/WM resp.)

where the GM fractional content equals the CSF (WM resp.)

fractional content. The boundary point x0 can be detected

by trilinear interpolation within the neighbouring voxels in

the GMPVC map, achieving subvoxel resolution. A ray cast-

ing technique [15] is used to extend the streamlines until the

actual boundary is found within the GMPVC map. The im-

plementation is based on a dichotomy search, with decreasing

stepsize down to ε = 1/10−3 of the voxel size.

Unlike Yezzi’s approach [4], where the boundary condi-

tions was set for all voxels labelled as WM or CSF, we set

the boundary condition to the GM voxels sharing a bound-

ary with one or more mixed voxel, as
−→
T is undefined outside

the GM mask. Also, as depicted in Fig. 1.b, it is quite com-

mon for deep sulci to have a CSF voxel surrounded by GM,

which means that at this voxel the computed fractional con-

tent of GM (GM/CSF/GM) does not reflect the geometry of

the structure. Therefore, the GMPVC map is modified ac-

cording to the direction of the streamlines at the boundary. If

a mixed GM/CSF voxel is surrounded by two or more GM

voxels with their unit tangent vectors
−→
T pointing in opposite

directions, the GMPVC value is reapportioned amongst the

adjacent voxels according to the projection of their unit tan-

gent vector
−→
T over the rectangular grid, such that for x :

GMPVC(i) = GMPVC(i)
1

1 +
|Tx[i−1]|+|Tx[i+1]|

2

if sign(Tx[i− 1]) �= sign(Tx[i + 1])

(6)

which is equivalent to reapportion the fractional content amongst

the voxels i− 1 and i + 1. This step is reiterated for each di-

rection y, z on the discrete grid coordinates j, k, ensuring that

the PVC volume at this voxel will be equally distributed to all

neighbouring GM voxels.

Lastly, when the segmentation is corrected, some WM and

CSF voxels are assigned to the GM mask, which results in

some GM voxels having a GMPVC<1. Since a PVC=0.5 cor-

respond to the real boundary passing through the centre of the

voxel, the value of the GMPVC needs to be considered when

casting the ray, searching for the actual boundary. Therefore,

If the GMPVC drops below 0.5, the direction of the ray cast

needs to be inverted to point toward the GM, instead of point-

ing toward the mixed voxels.

With both boundaries initialised, the PDE are solved in

the remaining GM grid using the Eulerian approach [4] gener-

alised for anisotropic images [7]. The cortical thickness map

is then smoothed using the interquartile mean (IQM) within

a 5mm radius sphere. The smoothing is performed on the

WM/GM boundary, and restricted to the connected compo-

nents of the GM mask inscribed within the smoothing sphere.

Using the deformation field previously computed to match the

priors to the data, the automated anatomical labelling (AAL)

template is mapped to the native space of the patient allow-

ing to compute the mean thickness for each region of interest

(ROI).

3. EXPERIMENTS AND RESULTS

3.1. Spherical shell

Experiments over a 3mm thick hollow sphere were performed

to determine the accuracy of the thickness measurement us-

ing PV estimation. To simulate the PV, the binary phantoms

are first generated on a high resolution grid (N × N × N ,

with N = 1100) with 0.1mm3 spacing and resampled to a

given lower resolution similar to actual MRI. The value of

each voxel is defined by the percentage of non-zero voxels

within the region covered by this voxel on the original grid.

The comparison of the thickness estimation method with

and without using PV estimation over spherical shells is pre-

sented in Table 1. The errors caused by the PV effect on the

sphere mean thickness are significantly reduced when using

PV estimation. For a 1mm3 resolution image the error is re-

duced from 9.33% to 1.33%. The results also show that the

PV estimation produces accurate results for both isotropic and

anisotropic data and accuracy is proportional to the image res-

olution.

3.2. Real data

From the OASIS database [16], we extracted 10 young healthy

subjects who underwent 4 scans at baseline and 4 more scans

during a subsequent session after a short delay (less than 90

days). For each session, an average motion-corrected image
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Table 1. Synthetic spherical shells 3mm thick were gener-

ated to compare accuracy of the thickness estimation with and

without using PV estimation.

Resolution No PV Estimation PV Estimation

Mean ± SD Mean ± SD

0.5x0.5x0.5 2.86 ± 0.08 3.01 ± 0.01

0.5x0.5x1 2.80 ± 0.16 3.02 ± 0.02

1x1x1 2.72 ± 0.17 3.04 ± 0.02

1x1x1.5 2.68 ± 0.24 3.05 ± 0.08

(co-registered average of all available data) is used for our

reliability test. The scans are T1W MPRAGE with isotropic

1mm3 resolution.

The Pearson correlation coefficient was used for each ROI

of the AAL template to assess the correlation between the two

measurements (Fig. 2.a). The cerebellum and subcortical nu-
clei were excluded from the analysis. R2 for all the regions

was above 0.8, and a paired t-test did not reveal any signifi-

cant differences between the 2 measurements (p > 0.01). We

found a mean (std. dev.) cortical thickness over the whole

brain of 2.54mm(0.3mm), which is within the accepted range

of cortical thickness for healthy young adults. An example

of the thickness map of an AD patient is presented in Fig.

2.b showing a pattern of atrophy in the temporal and occipital

lobes.
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Fig. 2. a. Mean cortical thickness over each AAL regions on

two scans of the 10 subjects. b. Marching cube rendering of

a thickness map of an AD patient after smoothing.

4. CONCLUSION

We have described a novel voxel-based method for accurate

cortical thickness estimation. The main contribution with pre-

viously proposed methods is that it preserves the computa-

tional efficiency of Eulerian-PDE approaches while improv-

ing the accuracy of the Lagrangian scheme through a better

initialisation. Unlike other approaches requiring a mesh to

take advantage of the PV estimation, all the calculations are

performed on the discrete grid. The method is simple, using a

ray casting technique in the direction of the tangent field, such

that the estimated boundary defines an equilibrium between

the shared fractional content. The full algorithm, including

atlas registration, segmentation, PV estimation, thickness es-

timation, smoothing and regional statistics extraction run un-

der 30 minutes on a standard PC.
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